Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Screen identifies group A streptococcus genes important for necrotizing disease

Group A streptococcus (GAS) is a common cause of life-threating necrotizing fasciitis and myositis. Necrotizing disease is relatively rare; however, it has a high rate of mortality, and affected limbs must often be amputated. In this episode, James Musser and colleagues use transposon-directed insertion-site sequencing (TraDIS) to identify GAS genes required for the development of necrotizing myositis in a nonhuman primate model. In particular, several bacterial transporters were determined to be required for infection, and thereby represent potential therapeutic targets for this devastating disease.

Published January 22, 2019, by Corinne Williams

Author's Take

Related articles

Gene fitness landscape of group A streptococcus during necrotizing myositis
Luchang Zhu, … , Andrew S. Waller, James M. Musser
Luchang Zhu, … , Andrew S. Waller, James M. Musser
Published February 1, 2019; First published January 22, 2019
Citation Information: J Clin Invest. 2019;129(2):887-901. https://doi.org/10.1172/JCI124994.
View: Text | PDF
Categories: Research Article Infectious disease Microbiology

Gene fitness landscape of group A streptococcus during necrotizing myositis

  • Text
  • PDF
Abstract

Necrotizing fasciitis and myositis are devastating infections characterized by high mortality. Group A streptococcus (GAS) is a common cause of these infections, but the molecular pathogenesis is poorly understood. We report a genome-wide analysis using serotype M1 and M28 strains that identified GAS genes contributing to necrotizing myositis in nonhuman primates (NHP), a clinically relevant model. Using transposon-directed insertion-site sequencing (TraDIS), we identified 126 and 116 GAS genes required for infection by serotype M1 and M28 organisms, respectively. For both M1 and M28 strains, more than 25% of the GAS genes required for necrotizing myositis encode known or putative transporters. Thirteen GAS transporters contributed to both M1 and M28 strain fitness in NHP myositis, including putative importers for amino acids, carbohydrates, and vitamins and exporters for toxins, quorum-sensing peptides, and uncharacterized molecules. Targeted deletion of genes encoding 5 transporters confirmed that each isogenic mutant strain was significantly (P < 0.05) impaired in causing necrotizing myositis in NHPs. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis showed that these 5 genes are expressed in infected NHP and human skeletal muscle. Certain substrate-binding lipoproteins of these transporters, such as Spy0271 and Spy1728, were previously documented to be surface exposed, suggesting that our findings have translational research implications.

Authors

Luchang Zhu, Randall J. Olsen, Stephen B. Beres, Jesus M. Eraso, Matthew Ojeda Saavedra, Samantha L. Kubiak, Concepcion C. Cantu, Leslie Jenkins, Amelia R. L. Charbonneau, Andrew S. Waller, James M. Musser

×
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts