Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Stem cells

  • 82 Articles
  • 3 Posts
  • ←
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • →
Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle
Karen A. Lapidos, … , Averil Ma, Elizabeth M. McNally
Karen A. Lapidos, … , Averil Ma, Elizabeth M. McNally
Published December 1, 2004
Citation Information: J Clin Invest. 2004;114(11):1577-1585. https://doi.org/10.1172/JCI23071.
View: Text | PDF

Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle

  • Text
  • PDF
Abstract

Pluripotent bone marrow–derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks δ-sarcoglycan. The absence of δ-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female δ-sarcoglycan–null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow–derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.

Authors

Karen A. Lapidos, Yiyin E. Chen, Judy U. Earley, Ahlke Heydemann, Jill M. Huber, Marcia Chien, Averil Ma, Elizabeth M. McNally

×

Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells
Atsushi Otani, … , John Heckenlively, Martin Friedlander
Atsushi Otani, … , John Heckenlively, Martin Friedlander
Published September 15, 2004
Citation Information: J Clin Invest. 2004;114(6):765-774. https://doi.org/10.1172/JCI21686.
View: Text | PDF

Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells

  • Text
  • PDF
Abstract

Inherited retinal degenerations afflict 1 in 3,500 individuals and are a heterogeneous group of diseases that result in profound vision loss, usually the result of retinal neuronal apoptosis. Atrophic changes in the retinal vasculature are also observed in many of these degenerations. While it is thought that this atrophy is secondary to diminished metabolic demand in the face of retinal degeneration, the precise relationship between the retinal neuronal and vascular degeneration is not clear. In this study we demonstrate that whenever a fraction of mouse or human adult bone marrow–derived stem cells (lineage-negative hematopoietic stem cells [Lin– HSCs]) containing endothelial precursors stabilizes and rescues retinal blood vessels that would ordinarily completely degenerate, a dramatic neurotrophic rescue effect is also observed. Retinal nuclear layers are preserved in 2 mouse models of retinal degeneration, rd1 and rd10, and detectable, albeit severely abnormal, electroretinogram recordings are observed in rescued mice at times when they are never observed in control-treated or untreated eyes. The normal mouse retina consists predominantly of rods, but the rescued cells after treatment with Lin– HSCs are nearly all cones. Microarray analysis of rescued retinas demonstrates significant upregulation of many antiapoptotic genes, including small heat shock proteins and transcription factors. These results suggest a new paradigm for thinking about the relationship between vasculature and associated retinal neuronal tissue as well as a potential treatment for delaying the progression of vision loss associated with retinal degeneration regardless of the underlying genetic defect.

Authors

Atsushi Otani, Michael Ian Dorrell, Karen Kinder, Stacey K. Moreno, Steven Nusinowitz, Eyal Banin, John Heckenlively, Martin Friedlander

×

Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle
Yvan Torrente, … , Giulio Cossu, Nereo Bresolin
Yvan Torrente, … , Giulio Cossu, Nereo Bresolin
Published July 15, 2004
Citation Information: J Clin Invest. 2004;114(2):182-195. https://doi.org/10.1172/JCI20325.
View: Text | PDF

Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle

  • Text
  • PDF
Abstract

Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early myogenic markers. Freshly isolated, circulating AC133+ cells were induced to undergo myogenesis when cocultured with myogenic cells or exposed to Wnt-producing cells in vitro and when delivered in vivo through the arterial circulation or directly into the muscles of transgenic scid/mdx mice (which allow survival of human cells). Injected cells also localized under the basal lamina of host muscle fibers and expressed satellite cell markers such as M-cadherin and MYF5. Furthermore, functional tests of injected muscles revealed a substantial recovery of force after treatment. As these cells can be isolated from the blood, manipulated in vitro, and delivered through the circulation, they represent a possible tool for future cell therapy applications in DMD disease or other muscular dystrophies.

Authors

Yvan Torrente, Marzia Belicchi, Maurilio Sampaolesi, Federica Pisati, Mirella Meregalli, Giuseppe D’Antona, Rossana Tonlorenzi, Laura Porretti, Manuela Gavina, Kamel Mamchaoui, Maria Antonietta Pellegrino, Denis Furling, Vincent Mouly, Gillian S. Butler-Browne, Roberto Bottinelli, Giulio Cossu, Nereo Bresolin

×

Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners
Fernando D. Camargo, … , Milton Finegold, Margaret A. Goodell
Fernando D. Camargo, … , Milton Finegold, Margaret A. Goodell
Published May 1, 2004
Citation Information: J Clin Invest. 2004;113(9):1266-1270. https://doi.org/10.1172/JCI21301.
View: Text | PDF

Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners

  • Text
  • PDF
Abstract

Several recent reports have demonstrated that transplantation of bone marrow cells can result in the generation of functional hepatocytes. Cellular fusion between bone marrow–derived cells and host hepatocytes has been shown to be the mechanism of this phenomenon. However, the exact identity of the bone marrow cells that mediate cellular fusion has remained undetermined. Here we demonstrate that the hematopoietic progeny of a single hematopoietic stem cell (HSC) is sufficient to produce functional hepatic repopulation. Furthermore, transplantation of lymphocyte-deficient bone marrow cells and in vivo fate mapping of the myeloid lineage revealed that HSC-derived hepatocytes are primarily derived from mature myelomonocytic cells. In addition, using a Cre/lox–based strategy, we directly demonstrate that myeloid cells spontaneously fuse with host hepatocytes. Our findings raise the possibility that differentiated myeloid cells may be useful for future therapeutic applications of in vivo cellular fusion.

Authors

Fernando D. Camargo, Milton Finegold, Margaret A. Goodell

×

Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny
Amy Li, … , Richard Redvers, Pritinder Kaur
Amy Li, … , Richard Redvers, Pritinder Kaur
Published February 1, 2004
Citation Information: J Clin Invest. 2004;113(3):390-400. https://doi.org/10.1172/JCI19140.
View: Text | PDF

Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny

  • Text
  • PDF
Abstract

Given our recent discovery that it is possible to separate human epidermal stem cells of the skin from their more committed progeny (i.e., transit-amplifying cells and early differentiating cells) using FACS techniques, we sought to determine the comparative tissue regeneration ability of these keratinocyte progenitors. We demonstrate that the ability to regenerate a fully stratified epidermis with appropriate spatial and temporal expression of differentiation markers in a short-term in vitro organotypic culture system is an intrinsic characteristic of both epidermal stem and transit-amplifying cells, although the stem cell fraction is most capable of achieving homeostasis. Early differentiating keratinocytes exhibited limited short-term tissue regeneration under specific experimental conditions in this assay, although significant improvement was obtained by manipulating microenvironmental factors, that is, coculture with minimally passaged dermal cells or exogenous supply of the ECM protein laminin-10/11. Importantly, transplantation of all classes of keratinocyte progenitors into an in vivo setting demonstrated that tissue regeneration can be elicited from stem, transit-amplifying, and early differentiating keratinocytes for up to 10 weeks. These data illustrate that significant proliferative and tissue-regenerative capacity resides not only in keratinocyte stem cells as expected, but also in their more committed progeny, including early differentiating cells.

Authors

Amy Li, Normand Pouliot, Richard Redvers, Pritinder Kaur

×

Mitochondrial DNA mutations in human colonic crypt stem cells
Robert W. Taylor, … , Thomas B.L. Kirkwood, Douglass M. Turnbull
Robert W. Taylor, … , Thomas B.L. Kirkwood, Douglass M. Turnbull
Published November 1, 2003
Citation Information: J Clin Invest. 2003;112(9):1351-1360. https://doi.org/10.1172/JCI19435.
View: Text | PDF

Mitochondrial DNA mutations in human colonic crypt stem cells

  • Text
  • PDF
Abstract

The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell.

Authors

Robert W. Taylor, Martin J. Barron, Gillian M. Borthwick, Amy Gospel, Patrick F. Chinnery, David C. Samuels, Geoffrey A. Taylor, Stefan M. Plusa, Stephanie J. Needham, Laura C. Greaves, Thomas B.L. Kirkwood, Douglass M. Turnbull

×

HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver
Orit Kollet, … , David A. Shafritz, Tsvee Lapidot
Orit Kollet, … , David A. Shafritz, Tsvee Lapidot
Published July 15, 2003
Citation Information: J Clin Invest. 2003;112(2):160-169. https://doi.org/10.1172/JCI17902.
View: Text | PDF

HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver

  • Text
  • PDF
Abstract

Hematopoietic stem cells rarely contribute to hepatic regeneration, however, the mechanisms governing their homing to the liver, which is a crucial first step, are poorly understood. The chemokine stromal cell–derived factor-1 (SDF-1), which attracts human and murine progenitors, is expressed by liver bile duct epithelium. Neutralization of the SDF-1 receptor CXCR4 abolished homing and engraftment of the murine liver by human CD34+ hematopoietic progenitors, while local injection of human SDF-1 increased their homing. Engrafted human cells were localized in clusters surrounding the bile ducts, in close proximity to SDF-1–expressing epithelial cells, and differentiated into albumin-producing cells. Irradiation or inflammation increased SDF-1 levels and hepatic injury induced MMP-9 activity, leading to both increased CXCR4 expression and SDF-1–mediated recruitment of hematopoietic progenitors to the liver. Unexpectedly, HGF, which is increased following liver injury, promoted protrusion formation, CXCR4 upregulation, and SDF-1–mediated directional migration by human CD34+ progenitors, and synergized with stem cell factor. Thus, stress-induced signals, such as increased expression of SDF-1, MMP-9, and HGF, recruit human CD34+ progenitors with hematopoietic and/or hepatic-like potential to the liver of NOD/SCID mice. Our results suggest the potential of hematopoietic CD34+/CXCR4+cells to respond to stress signals from nonhematopoietic injured organs as an important mechanism for tissue targeting and repair.

Authors

Orit Kollet, Shoham Shivtiel, Yuan-Qing Chen, Jenny Suriawinata, Swan N. Thung, Mariana D. Dabeva, Joy Kahn, Asaf Spiegel, Ayelet Dar, Sarit Samira, Polina Goichberg, Alexander Kalinkovich, Fernando Arenzana-Seisdedos, Arnon Nagler, Izhar Hardan, Michel Revel, David A. Shafritz, Tsvee Lapidot

×

Bone marrow stem cells contribute to repair of the ischemically injured renal tubule
Sujata Kale, … , Diane S. Krause, Lloyd G. Cantley
Sujata Kale, … , Diane S. Krause, Lloyd G. Cantley
Published July 1, 2003
Citation Information: J Clin Invest. 2003;112(1):42-49. https://doi.org/10.1172/JCI17856.
View: Text | PDF

Bone marrow stem cells contribute to repair of the ischemically injured renal tubule

  • Text
  • PDF
Abstract

The paradigm for recovery of the renal tubule from acute tubular necrosis is that surviving cells from the areas bordering the injury must migrate into the regions of tubular denudation and proliferate to re-establish the normal tubular epithelium. However, therapies aimed at stimulating these events have failed to alter the course of acute renal failure in human trials. In the present study, we demonstrate that Lin–Sca-1+ cells from the adult mouse bone marrow are mobilized into the circulation by transient renal ischemia and home specifically to injured regions of the renal tubule. There they differentiate into renal tubular epithelial cells and appear to constitute the majority of the cells present in the previously necrotic tubules. Loss of stem cells following bone marrow ablation results in a greater rise in blood urea nitrogen after renal ischemia, while stem cell infusion after bone marrow ablation reverses this effect. Thus, therapies aimed at enhancing the mobilization, propagation, and/or delivery of bone marrow stem cells to the kidney hold potential as entirely new approaches for the treatment of acute tubular necrosis.

Authors

Sujata Kale, Anil Karihaloo, Paul R. Clark, Michael Kashgarian, Diane S. Krause, Lloyd G. Cantley

×

Spontaneous circulation of myeloid-lymphoid–initiating cells and SCID-repopulating cells in sickle cell crisis
Christopher E.D. Lamming, … , Robert P. Hebbel, Catherine M. Verfaillie
Christopher E.D. Lamming, … , Robert P. Hebbel, Catherine M. Verfaillie
Published March 15, 2003
Citation Information: J Clin Invest. 2003;111(6):811-819. https://doi.org/10.1172/JCI15956.
View: Text | PDF

Spontaneous circulation of myeloid-lymphoid–initiating cells and SCID-repopulating cells in sickle cell crisis

  • Text
  • PDF
Abstract

The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid–initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture–initiating cells, consistent with the notion that SRCs are more primitive than long-term culture–initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation.

Authors

Christopher E.D. Lamming, Lance Augustin, Mark Blackstad, Troy C. Lund, Robert P. Hebbel, Catherine M. Verfaillie

×

Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration
Susan M. Majka, … , Margaret A. Goodell, Karen K. Hirschi
Susan M. Majka, … , Margaret A. Goodell, Karen K. Hirschi
Published January 1, 2003
Citation Information: J Clin Invest. 2003;111(1):71-79. https://doi.org/10.1172/JCI16157.
View: Text | PDF

Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration

  • Text
  • PDF
Abstract

Vascular progenitors were previously isolated from blood and bone marrow; herein, we define the presence, phenotype, potential, and origin of vascular progenitors resident within adult skeletal muscle. Two distinct populations of cells were simultaneously isolated from hindlimb muscle: the side population (SP) of highly purified hematopoietic stem cells and non-SP cells, which do not reconstitute blood. Muscle SP cells were found to be derived from, and replenished by, bone marrow SP cells; however, within the muscle environment, they were phenotypically distinct from marrow SP cells. Non-SP cells were also derived from marrow stem cells and contained progenitors with a mesenchymal phenotype. Muscle SP and non-SP cells were isolated from Rosa26 mice and directly injected into injured muscle of genetically matched recipients. SP cells engrafted into endothelium during vascular regeneration, and non-SP cells engrafted into smooth muscle. Thus, distinct populations of vascular progenitors are resident within skeletal muscle, are derived from bone marrow, and exhibit different cell fates during injury-induced vascular regeneration.

Authors

Susan M. Majka, Kathyjo A. Jackson, Kirsten A. Kienstra, Mark W. Majesky, Margaret A. Goodell, Karen K. Hirschi

×
  • ←
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • →
Transcriptional dysfunction in Beckwith-Wiedemann syndrome
Jian Chen and colleagues present evidence that dysfunctional TGF-β/β2SP/CTFC signaling underlies spontaneous tumor development in Beckwith-Wiedemann syndrome…
Published January 19, 2016
Scientific Show StopperStem cells
Thumb slide1

Repairing injured tendons with endogenous stem cells
Chang Lee and colleagues harness endogenous stem/progenitor cells to enhance tendon repair in rats…
Published June 8, 2015
Scientific Show StopperStem cells
Thumb 81589post

Deriving hypothalamic-like neurons
Liheng Wang and colleagues reveal that hypothalamic-like neurons can be derived from human pluripotent stem cells….
Published January 2, 2015
Scientific Show StopperStem cells
Thumb 79220
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts