Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Therapeutics

  • 58 Articles
  • 0 Posts
  • ←
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • →
MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma
Yao Zhan, … , Wilson H. Miller Jr., Sonia V. del Rincón
Yao Zhan, … , Wilson H. Miller Jr., Sonia V. del Rincón
Published October 16, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI91258.
View: Text | PDF

MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma

  • Text
  • PDF
Abstract

Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase–interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations.

Authors

Yao Zhan, Jun Guo, William Yang, Christophe Goncalves, Tomasz Rzymski, Agnieszka Dreas, Eliza Żyłkiewicz, Maciej Mikulski, Krzysztof Brzózka, Aniela Golas, Yan Kong, Meng Ma, Fan Huang, Bonnie Huor, Qianyu Guo, Sabrina Daniela da Silva, Jose Torres, Yutian Cai, Ivan Topisirovic, Jie Su, Krikor Bijian, Moulay A. Alaoui-Jamali, Sidong Huang, Fabrice Journe, Ghanem E. Ghanem, Wilson H. Miller Jr., Sonia V. del Rincón

×

mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy
Rosa Bartolomeo, … , Andrea Ballabio, Carmine Settembre
Rosa Bartolomeo, … , Andrea Ballabio, Carmine Settembre
Published September 5, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94130.
View: Text | PDF

mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy

  • Text
  • PDF
Abstract

The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance–associated gene (UVRAG), reducing the activity of the associated Beclin 1–Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1–Vps34–UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.

Authors

Rosa Bartolomeo, Laura Cinque, Chiara De Leonibus, Alison Forrester, Anna Chiara Salzano, Jlenia Monfregola, Emanuela De Gennaro, Edoardo Nusco, Isabella Azario, Carmela Lanzara, Marta Serafini, Beth Levine, Andrea Ballabio, Carmine Settembre

×

Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents
Minfeng Chen, … , Dongmei Zhang, Wencai Ye
Minfeng Chen, … , Dongmei Zhang, Wencai Ye
Published August 28, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94258.
View: Text | PDF

Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents

  • Text
  • PDF
Abstract

Blood vessels in the tumor periphery have high pericyte coverage and are resistant to vascular disrupting agents (VDAs). VDA treatment resistance leads to a viable peripheral tumor rim that contributes to treatment failure and disease recurrence. Here, we provide evidence to support a hypothesis that shifting the target of VDAs from tumor vessel endothelial cells to pericytes disrupts tumor peripheral vessels and the viable rim, circumventing VDA treatment resistance. Through chemical engineering, we developed Z-GP-DAVLBH (from the tubulin-binding VDA desacetylvinblastine monohydrazide [DAVLBH]) as a prodrug that can be selectively activated by fibroblast activation protein α (FAPα) in tumor pericytes. Z-GP-DAVLBH selectively destroys the cytoskeleton of FAPα-expressing tumor pericytes, disrupting blood vessels both within the core and around the periphery of tumors. As a result, Z-GP-DAVLBH treatment eradicated the otherwise VDA-resistant tumor rim and led to complete regression of tumors in multiple lines of xenografts without producing the drug-related toxicity that is associated with similar doses of DAVLBH. This study demonstrates that targeting tumor pericytes with an FAPα-activated VDA prodrug represents a potential vascular disruption strategy in overcoming tumor resistance to VDA treatments.

Authors

Minfeng Chen, Xueping Lei, Changzheng Shi, Maohua Huang, Xiaobo Li, Baojian Wu, Zhengqiu Li, Weili Han, Bin Du, Jianyang Hu, Qiulin Nie, Weiqian Mai, Nan Ma, Nanhui Xu, Xinyi Zhang, Chunlin Fan, Aihua Hong, Minghan Xia, Liangping Luo, Ande Ma, Hongsheng Li, Qiang Yu, Heru Chen, Dongmei Zhang, Wencai Ye

×

Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia
James S. Ware, … , Ian P. Hall, Mark Glover
James S. Ware, … , Ian P. Hall, Mark Glover
Published August 7, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89812.
View: Text | PDF

Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia

  • Text
  • PDF
Abstract

Thiazide diuretics are among the most widely used treatments for hypertension, but thiazide-induced hyponatremia (TIH), a clinically significant adverse effect, is poorly understood. Here, we have studied the phenotypic and genetic characteristics of patients hospitalized with TIH. In a cohort of 109 TIH patients, those with severe TIH displayed an extended phenotype of intravascular volume expansion, increased free water reabsorption, urinary prostaglandin E2 excretion, and reduced excretion of serum chloride, magnesium, zinc, and antidiuretic hormone. GWAS in a separate cohort of 48 TIH patients and 2,922 controls from the 1958 British birth cohort identified an additional 14 regions associated with TIH. We identified a suggestive association with a variant in SLCO2A1, which encodes a prostaglandin transporter in the distal nephron. Resequencing of SLCO2A1 revealed a nonsynonymous variant, rs34550074 (p.A396T), and association with this SNP was replicated in a second cohort of TIH cases. TIH patients with the p.A396T variant demonstrated increased urinary excretion of prostaglandin E2 and metabolites. Moreover, the SLCO2A1 phospho-mimic p.A396E showed loss of transporter function in vitro. These findings indicate that the phenotype of TIH involves a more extensive metabolic derangement than previously recognized. We propose one mechanism underlying TIH development in a subgroup of patients in which SLCO2A1 regulation is altered.

Authors

James S. Ware, Louise V. Wain, Sarath K. Channavajjhala, Victoria E. Jackson, Elizabeth Edwards, Run Lu, Keith Siew, Wenjing Jia, Nick Shrine, Sue Kinnear, Mahli Jalland, Amanda P. Henry, Jenny Clayton, Kevin M. O’Shaughnessy, Martin D. Tobin, Victor Schuster, Stuart Cook, Ian P. Hall, Mark Glover

×

Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva
Kyosuke Hino, … , Junya Toguchida, Makoto Ikeya
Kyosuke Hino, … , Junya Toguchida, Makoto Ikeya
Published July 31, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93521.
View: Text | PDF

Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva

  • Text
  • PDF
Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1, a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling, we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling. Although Activin-A evokes enhanced chondrogenesis in vitro and heterotopic ossification (HO) in vivo, the underlying mechanisms have yet to be revealed. To this end, we developed a high-throughput screening (HTS) system using FOP patient–derived induced pluripotent stem cells (FOP-iPSCs) to identify pivotal pathways in enhanced chondrogenesis that are initiated by Activin-A. In a screen of 6,809 small-molecule compounds, we identified mTOR signaling as a critical pathway for the aberrant chondrogenesis of mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs). Two different HO mouse models, an FOP model mouse expressing FOP-ACVR1 and an FOP-iPSC–based HO model mouse, revealed critical roles for mTOR signaling in vivo. Moreover, we identified ENPP2, an enzyme that generates lysophosphatidic acid, as a linker of FOP-ACVR1 and mTOR signaling in chondrogenesis. These results uncovered the crucial role of the Activin-A/FOP-ACVR1/ENPP2/mTOR axis in FOP pathogenesis.

Authors

Kyosuke Hino, Kazuhiko Horigome, Megumi Nishio, Shingo Komura, Sanae Nagata, Chengzhu Zhao, Yonghui Jin, Koichi Kawakami, Yasuhiro Yamada, Akira Ohta, Junya Toguchida, Makoto Ikeya

×

A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens
Aaron Y. Chang, … , Cheng Liu, David A. Scheinberg
Aaron Y. Chang, … , Cheng Liu, David A. Scheinberg
Published June 19, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92335.
View: Text | PDF | Corrigendum

A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens

  • Text
  • PDF
Abstract

Preferentially expressed antigen in melanoma (PRAME) is a cancer-testis antigen that is expressed in many cancers and leukemias. In healthy tissue, PRAME expression is limited to the testes and ovaries, making it a highly attractive cancer target. PRAME is an intracellular protein that cannot currently be drugged. After proteasomal processing, the PRAME300–309 peptide ALYVDSLFFL (ALY) is presented in the context of human leukocyte antigen HLA-A*02:01 molecules for recognition by the T cell receptor (TCR) of cytotoxic T cells. Here, we have described Pr20, a TCR mimic (TCRm) human IgG1 antibody that recognizes the cell-surface ALY peptide/HLA-A2 complex. Pr20 is an immunological tool and potential therapeutic agent. Pr20 bound to PRAME+HLA-A2+ cancers. An afucosylated Fc form (Pr20M) directed antibody-dependent cellular cytotoxicity against PRAME+HLA-A2+ leukemia cells and was therapeutically effective against mouse xenograft models of human leukemia. In some tumors, Pr20 binding markedly increased upon IFN-γ treatment, mediated by induction of the immunoproteasome catalytic subunit β5i. The immunoproteasome reduced internal destructive cleavages within the ALY epitope compared with the constitutive proteasome. The data provide rationale for developing TCRm antibodies as therapeutic agents for cancer, offer mechanistic insight on proteasomal regulation of tumor-associated peptide/HLA antigen complexes, and yield possible therapeutic solutions to target antigens with ultra-low surface presentation.

Authors

Aaron Y. Chang, Tao Dao, Ron S. Gejman, Casey A. Jarvis, Andrew Scott, Leonid Dubrovsky, Melissa D. Mathias, Tatyana Korontsvit, Victoriya Zakhaleva, Michael Curcio, Ronald C. Hendrickson, Cheng Liu, David A. Scheinberg

×

Identification of a nucleoside analog active against adenosine kinase–expressing plasma cell malignancies
Utthara Nayar, … , Kenneth M. Kaye, Ethel Cesarman
Utthara Nayar, … , Kenneth M. Kaye, Ethel Cesarman
Published May 15, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI83936.
View: Text | PDF

Identification of a nucleoside analog active against adenosine kinase–expressing plasma cell malignancies

  • Text
  • PDF
Abstract

Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase–inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI–sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers.

Authors

Utthara Nayar, Jouliana Sadek, Jonathan Reichel, Denise Hernandez-Hopkins, Gunkut Akar, Peter J. Barelli, Michelle A. Sahai, Hufeng Zhou, Jennifer Totonchy, David Jayabalan, Ruben Niesvizky, Ilaria Guasparri, Duane Hassane, Yifang Liu, Shizuko Sei, Robert H. Shoemaker, J. David Warren, Olivier Elemento, Kenneth M. Kaye, Ethel Cesarman

×

Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells
Margaret Nieborowska-Skorska, … , Stephen M. Sykes, Tomasz Skorski
Margaret Nieborowska-Skorska, … , Stephen M. Sykes, Tomasz Skorski
Published May 8, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90825.
View: Text | PDF

Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells

  • Text
  • PDF
Abstract

Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.

Authors

Margaret Nieborowska-Skorska, Katherine Sullivan, Yashodhara Dasgupta, Paulina Podszywalow-Bartnicka, Grazyna Hoser, Silvia Maifrede, Esteban Martinez, Daniela Di Marcantonio, Elisabeth Bolton-Gillespie, Kimberly Cramer-Morales, Jaewong Lee, Min Li, Artur Slupianek, Daniel Gritsyuk, Sabine Cerny-Reiterer, Ilona Seferynska, Tomasz Stoklosa, Lars Bullinger, Huaqing Zhao, Vera Gorbunova, Katarzyna Piwocka, Peter Valent, Curt I. Civin, Markus Muschen, John E. Dick, Jean C.Y. Wang, Smita Bhatia, Ravi Bhatia, Kolia Eppert, Mark D. Minden, Stephen M. Sykes, Tomasz Skorski

×

Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer
John D. Norris, … , William D. Figg, Donald P. McDonnell
John D. Norris, … , William D. Figg, Donald P. McDonnell
Published May 2, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI87328.
View: Text | PDF

Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer

  • Text
  • PDF
Abstract

The clinical utility of inhibiting cytochrome P450 17A1 (CYP17), a cytochrome p450 enzyme that is required for the production of androgens, has been exemplified by the approval of abiraterone for the treatment of castration-resistant prostate cancer (CRPC). Recently, however, it has been reported that CYP17 inhibitors can interact directly with the androgen receptor (AR). A phase I study recently reported that seviteronel, a CYP17 lyase–selective inhibitor, demonstrated a sustained reduction in prostate-specific antigen in a patient with CRPC, and another study showed seviteronel’s direct effects on AR function. This suggested that seviteronel may have therapeutically relevant activities in addition to its ability to inhibit androgen production. Here, we have demonstrated that CYP17 inhibitors, with the exception of orteronel, can function as competitive AR antagonists. Conformational profiling revealed that the CYP17 inhibitor–bound AR adopted a conformation that resembled the unliganded AR (apo-AR), precluding nuclear localization and DNA binding. Further, we observed that seviteronel and abiraterone inhibited the growth of tumor xenografts expressing the clinically relevant mutation AR-F876L and that this activity could be attributed entirely to competitive AR antagonism. The results of this study suggest that the ability of CYP17 inhibitors to directly antagonize the AR may contribute to their clinical efficacy in CRPC.

Authors

John D. Norris, Stephanie J. Ellison, Jennifer G. Baker, David B. Stagg, Suzanne E. Wardell, Sunghee Park, Holly M. Alley, Robert M. Baldi, Alexander Yllanes, Kaitlyn J. Andreano, James P. Stice, Scott A. Lawrence, Joel R. Eisner, Douglas K. Price, William R. Moore, William D. Figg, Donald P. McDonnell

×

Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors
Tyrel T. Smith, … , K. Dane Wittrup, Matthias T. Stephan
Tyrel T. Smith, … , K. Dane Wittrup, Matthias T. Stephan
Published April 24, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI87624.
View: Text | PDF

Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors

  • Text
  • PDF
Abstract

Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.

Authors

Tyrel T. Smith, Howell F. Moffett, Sirkka B. Stephan, Cary F. Opel, Amy G. Dumigan, Xiuyun Jiang, Venu G. Pillarisetty, Smitha P. S. Pillai, K. Dane Wittrup, Matthias T. Stephan

×
  • ←
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • →

No posts were found with this tag.

Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts